Sample of thesis English editing

Field of research: physics - electromagnetism

2 Galilean Electromagnetism Re-examined-

Each of the four cases is compriseds of two pairs offor comparison:-which are $\left(x^{0}, x^{i}\right)$ and (A^{0}, A^{i}) infor $\gamma: 1$. By which one is excessivesignificantly larger than the other in each pair, we have these four cases: (1)_6Case_1: $x^{0} ? x^{i}, A^{0} ? A^{i}, \gamma: 1 ; 1_{1}$ (2) 6Case_2: $x^{0} ? x^{i}, A^{0}=A^{i}-, \gamma: 1_{i}-,(3) _$©Case_3: $x^{0}=x^{i}, A^{0} ? A^{i}-$, $\gamma: 1-$; and (4) \in Case_4: $x^{0}=x^{i}, A^{0}=A^{i}-, \gamma: 1$. And ilf we hopeassume that the electric field and the magnetic field are not dependent on the electromagnetic four-potential-, we willcan ignore the e_Case_1 and the c-Case_4.

2.1 Case_1: $x^{0} ? x^{i}, A^{0} ? A^{i}, \gamma: 1$

In Fthe first case, we consider Maxwell's equations inunder the-conditions (??):-

$$
\begin{align*}
& x^{0} ? x^{i} \\
& A^{0} ? A^{i} \\
& \gamma=\frac{1}{\sqrt{\left(1-\left(\frac{v}{c}\right)^{2}\right)}}: 1 . \tag{1}
\end{align*}
$$

Maxwell's equations are related withto the electric and the magnetic fields. Therefore, we first need to know the electric field and the magnetic field first if we want to explore Maxwell's equation's in this case.

The electric field and the magnetic field are:-

$$
\begin{aligned}
& F^{i 0}=\partial^{i} A^{0}-\partial^{0} A^{i} \text { and } \\
& F^{i j}=\partial^{i} A^{j}-\partial^{j} A^{i}{ }_{-2}
\end{aligned}
$$

-respectively. From these two fields-listed above, it is clear could have a clear clue that we have to discussdetermine $A A^{\alpha \prime}$ s equation and $\partial^{\alpha}{ }_{s}$-equation if we want to know the electric field and the magnetic field in this case.

Comment [BM1]: CHECK: Do you mean 'conditions' here? A 'case' is a 'situation', 'circumstance', or specific set of conditions. A 'condition' is a single 'requirement' or 'specification'. For example, 'in the condition that x > y ' and 'In the case that the machine reaches the B state...'. The words have similar meanings but different uses. Please check them carefully.

Comment [BM2]: CHECK: It is redundant to say ' A 's equation' when A^{a} is itself an equation. It is okay to say 'the equation of A^{a} ' however, but it seems that you mainly wish to determine the 'value' of A^{a}. However, if you are splitting A^{a} into A^{0} and A^{1}, then it would be correct to say ' A^{a} 's equations' with the plural.

We will exploreexpand A^{α} 's equations first. The originalbasis equations of A^{α} isare:-

$$
\begin{aligned}
& A^{\prime 0}=\gamma\left(A^{0}+\frac{v_{i}}{c} A^{i}\right)-\text { and } \\
& A^{\prime i}=\gamma\left(A^{i}+\frac{v^{i}}{c} A^{0}\right)-.
\end{aligned}
$$

And wWe take anfind approximations of these byusing this case's conditions (condition (1)). Therefore, the equations of A^{α} can be rewritten as followsing:-

$$
\begin{aligned}
& A^{\prime 0}=A^{0}-\text { and } \\
& A^{\prime i}=A^{i}+\frac{v^{i}}{c} A^{0}-.
\end{aligned}
$$

The ethernext equation to be discussdetermined next is $\partial^{\prime \alpha}$'s equation. Thise equation can be inproduced byfrom x^{α} 's equation via the chain rule, and since x^{α} 's equation is easy to be calculate, so-we canwill start from itwith that. The $-x^{t e}$-lt's equations isare:-

$$
\begin{aligned}
& x^{\prime 0}=\gamma\left(x^{0}+\frac{v_{i}}{c} x^{i}\right)-\text { and } \\
& x^{\prime i}=\gamma\left(x^{i}+\frac{v^{i}}{c} x^{0}\right)-.
\end{aligned}
$$

We takeuse the same approximation as the last onebefore byusing this case's condition (condition (1)). Thenrefore, the equations of x^{α} can be rewritten as followsing:-

$$
\begin{aligned}
x^{\prime 0} & =x^{0}-\text {, and } \\
x^{\prime i} & =x^{i}+\frac{v^{i}}{c} x^{0} .
\end{aligned}
$$

If we use the Gchain Rrule from the conclusion above, we will getobtain:-

$$
\begin{align*}
& \partial^{\prime 0}=\partial^{0}+\frac{v_{l}}{c} \partial^{l}, \text {, and } \\
& \partial^{\prime i}=\partial^{i} . \tag{7}
\end{align*}
$$

Final text

2 Galilean Electromagnetism Re-examined

Each of the four cases is comprised of two pairs for comparison: $\left(x^{0}, x^{i}\right)$ and $\left(A^{0}, A^{i}\right)$ for $\gamma: 1$. By comparing which one is significantly larger than the other in each pair, we have these four cases: (1) Case 1: $x^{0} ? x^{i}, A^{0} ? A^{i}, \gamma: 1$; (2) Case 2: $x^{0} ? x^{i}, A^{0}=A^{i}$, $\gamma: 1$; (3) Case 3: $x^{0}=x^{i}, A^{0} ? A^{i}, \gamma: 1$; and (4) Case 4: $x^{0}=x^{i}$, $A^{0}=A^{i}, \gamma: 1$. If we assume that the electric field and the magnetic field are not dependent on the electromagnetic four-potential, we can ignore Case 1 and Case 4.

2.1 Case 1: $x^{0} ? x^{i}, A^{0} ? A^{i}, \gamma: 1$

In the first case, we consider Maxwell's equations under conditions (??):

$$
\begin{align*}
& x^{0} ? x^{i} \\
& A^{0} ? A^{i} \\
& \gamma=\frac{1}{\sqrt{\left(1-\left(\frac{v}{c}\right)^{2}\right)}}: 1 . \tag{8}
\end{align*}
$$

Maxwell's equations are related to the electric and magnetic fields. Therefore, we first need to know the electric field and the magnetic field if we want to explore Maxwell's equations in this case.

The electric field and the magnetic field are:

$$
\begin{align*}
& F^{i 0}=\partial^{i} A^{0}-\partial^{0} A^{i} \text { and } \\
& F^{i j}=\partial^{i} A^{j}-\partial^{j} A^{i}, \tag{9}
\end{align*}
$$

respectively. From these two fields, it is clear that we have to determine A^{α} and ∂^{α} if we want to know the electric field and the magnetic field in this case.

We will expand A^{α} 's equations first. The basis equations of A^{α} are:

$$
\begin{align*}
A^{\prime 0} & =\gamma\left(A^{0}+\frac{v_{i}}{c} A^{i}\right) \text { and } \\
A^{\prime i} & =\gamma\left(A^{i}+\frac{v^{i}}{c} A^{0}\right) . \tag{10}
\end{align*}
$$

We find approximations of these using this case's conditions (condition (1)). The equations of A^{α} can be rewritten as follows:

$$
\begin{align*}
A^{\prime 0} & =A^{0} \text { and } \\
A^{\prime i} & =A^{i}+\frac{v^{i}}{c} A^{0} \tag{11}
\end{align*}
$$

The next equation to be determined is $\partial^{\prime \alpha}$. This can be produced from x^{α} 's equation via the chain rule, and since x^{α} is easy to calculate, we will start with that. Its equations are:

$$
\begin{align*}
x^{\prime 0} & =\gamma\left(x^{0}+\frac{v_{i}}{c} x^{i}\right) \text { and } \\
x^{\prime i} & =\gamma\left(x^{i}+\frac{v^{i}}{c} x^{0}\right) \tag{12}
\end{align*}
$$

We use the same approximation as before using this case's condition (condition (1)). Then, the equations of x^{α} can be rewritten as follows:

$$
\begin{align*}
x^{\prime 0} & =x^{0} \text { and } \\
x^{\prime i} & =x^{i}+\frac{v^{i}}{c} x^{0} \tag{13}
\end{align*}
$$

If we use the chain rule from the conclusion above, we obtain:

$$
\partial^{\prime 0}=\partial^{0}+\frac{v_{l}}{c} \partial^{l} \text { and }
$$

$$
\partial^{\prime i}=\partial^{i}
$$

