

Sample of Level 2 English Editing

Field of research: Biology and Ecology

Mercury toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes and mitogen- activating protein (MAP) kinase in rice roots

Mercury (Hg) is one of the most hazardous and toxic pollutants to the environment. Hg It is discharged into agricultural land and the environment through human activities, mainly as untreated industrial wastes. Hg is a toxic mental with a long biological half-life and represents a serious environmental pollutant for both animals and plants. It can accumulate in living organisms and consequently results in toxicity or even death in of plants [1, 2]. The predominant mercury Hg compounds in well-oxygenated soil environments are the soluble forms, HgCl₂, Hg(OH)Cl, and Hg(OH)₂ [3, 4]. The biochemical toxicity of MercuryHg has many reasons could be due to a number of reasons, such as the propensity of mercuric ions mayto react with sulfhydryl groups of biomolecules, disruption of protein structure, interferenceinterruption of cell signaling pathways, and displacement of essential elements -and cause the formation of reactive oxygen species (ROS) through the generation of oxidative stress [5]. Furthermore, Hg-induced oxidative damages in plants have has been linked to excessive production of reactive oxygen species (ROS), which may cause lipid peroxidation, enzyme inactivation, and DNA and membrane damage [6].

Lipoxgenases (LOXs; linoleate:oxygen oxidoreductase; EC1.13.11.12) are widely distributed in the plant and animal kingdom. Lipid peroxidation can be induced via an enzymatic pathway by LOX activity, which is very important for plants to protect cellular membranes and organelles from the damaging effects of ROS [6, 7]. The level of LOX activity reflects the degree of oxidative damage.

Comment [LWH1]: CHECK: Do not use abbreviations in the title.

Comment [LWH2]: Check: What structure are you referring to here?

and it<u>Specifically LOX</u> is an ubiquitously occurring enzyme that catalyzes the peroxidation of unsaturated fatty acids on biomembranes, producing hydroperoxides and oxy-free radicals [8, 9]. Exposure to higher concentrations of Hg alters the activities of lipoxgenases (LOX), <u>leading to increased a remarkable</u> peroxidation of lipids in roots [3].

ROS are associated with several physiological disorders, which includes<u>such as</u> increasinges thein mitochondrial hydrogen peroxide production, changing the es in mitochondrial membrane lipids, and resulting in the origin of tissue injury in plants [10]. The accumulation of ROS, such as the hydroxyl radical (OH⁻), superoxide anion ($^{\circ}O_2^{-}$), and hydrogen peroxide (H₂O₂), can damage cellular structures and inhibit function [11]. The most reactive production of all ROS is OH⁻, which and the hydroxyl radical is formed from H₂O₂ by the so-called Haber-Weiss or Fenton reaction [12-14]. Controlled modulation of ROS levels in plants is extremely important. Low concentrations of ROS, as signals, can be used as signals to repairing the cellular damage but high levels lead to programmed cell death [15, 16]. It is well known that plants with have the antioxidant systems to resist the oxidative damage, and these systems can operate both in constitutively and induciblyed ways [17].